3.187 \(\int \frac {\cot ^3(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=176 \[ -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {a}}\right )}{a^{3/2} d}+\frac {11 \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {2} \sqrt {a}}\right )}{16 \sqrt {2} a^{3/2} d}-\frac {3 a}{20 d (a \sec (c+d x)+a)^{5/2}}+\frac {a}{2 d (1-\sec (c+d x)) (a \sec (c+d x)+a)^{5/2}}+\frac {5}{24 d (a \sec (c+d x)+a)^{3/2}}+\frac {21}{16 a d \sqrt {a \sec (c+d x)+a}} \]

[Out]

-2*arctanh((a+a*sec(d*x+c))^(1/2)/a^(1/2))/a^(3/2)/d-3/20*a/d/(a+a*sec(d*x+c))^(5/2)+1/2*a/d/(1-sec(d*x+c))/(a
+a*sec(d*x+c))^(5/2)+5/24/d/(a+a*sec(d*x+c))^(3/2)+11/32*arctanh(1/2*(a+a*sec(d*x+c))^(1/2)*2^(1/2)/a^(1/2))/a
^(3/2)/d*2^(1/2)+21/16/a/d/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 176, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3880, 103, 152, 156, 63, 207} \[ -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {a}}\right )}{a^{3/2} d}+\frac {11 \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {2} \sqrt {a}}\right )}{16 \sqrt {2} a^{3/2} d}-\frac {3 a}{20 d (a \sec (c+d x)+a)^{5/2}}+\frac {a}{2 d (1-\sec (c+d x)) (a \sec (c+d x)+a)^{5/2}}+\frac {5}{24 d (a \sec (c+d x)+a)^{3/2}}+\frac {21}{16 a d \sqrt {a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^3/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(-2*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/(a^(3/2)*d) + (11*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/(Sqrt[2]*Sqr
t[a])])/(16*Sqrt[2]*a^(3/2)*d) - (3*a)/(20*d*(a + a*Sec[c + d*x])^(5/2)) + a/(2*d*(1 - Sec[c + d*x])*(a + a*Se
c[c + d*x])^(5/2)) + 5/(24*d*(a + a*Sec[c + d*x])^(3/2)) + 21/(16*a*d*Sqrt[a + a*Sec[c + d*x]])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 152

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Dist[(d*b^(m - 1)
)^(-1), Subst[Int[((-a + b*x)^((m - 1)/2)*(a + b*x)^((m - 1)/2 + n))/x, x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {\cot ^3(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx &=\frac {a^4 \operatorname {Subst}\left (\int \frac {1}{x (-a+a x)^2 (a+a x)^{7/2}} \, dx,x,\sec (c+d x)\right )}{d}\\ &=\frac {a}{2 d (1-\sec (c+d x)) (a+a \sec (c+d x))^{5/2}}-\frac {a \operatorname {Subst}\left (\int \frac {2 a^2+\frac {7 a^2 x}{2}}{x (-a+a x) (a+a x)^{7/2}} \, dx,x,\sec (c+d x)\right )}{2 d}\\ &=-\frac {3 a}{20 d (a+a \sec (c+d x))^{5/2}}+\frac {a}{2 d (1-\sec (c+d x)) (a+a \sec (c+d x))^{5/2}}+\frac {\operatorname {Subst}\left (\int \frac {-10 a^4-\frac {15 a^4 x}{4}}{x (-a+a x) (a+a x)^{5/2}} \, dx,x,\sec (c+d x)\right )}{10 a^2 d}\\ &=-\frac {3 a}{20 d (a+a \sec (c+d x))^{5/2}}+\frac {a}{2 d (1-\sec (c+d x)) (a+a \sec (c+d x))^{5/2}}+\frac {5}{24 d (a+a \sec (c+d x))^{3/2}}-\frac {\operatorname {Subst}\left (\int \frac {30 a^6-\frac {75 a^6 x}{8}}{x (-a+a x) (a+a x)^{3/2}} \, dx,x,\sec (c+d x)\right )}{30 a^5 d}\\ &=-\frac {3 a}{20 d (a+a \sec (c+d x))^{5/2}}+\frac {a}{2 d (1-\sec (c+d x)) (a+a \sec (c+d x))^{5/2}}+\frac {5}{24 d (a+a \sec (c+d x))^{3/2}}+\frac {21}{16 a d \sqrt {a+a \sec (c+d x)}}+\frac {\operatorname {Subst}\left (\int \frac {-30 a^8+\frac {315 a^8 x}{16}}{x (-a+a x) \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{30 a^8 d}\\ &=-\frac {3 a}{20 d (a+a \sec (c+d x))^{5/2}}+\frac {a}{2 d (1-\sec (c+d x)) (a+a \sec (c+d x))^{5/2}}+\frac {5}{24 d (a+a \sec (c+d x))^{3/2}}+\frac {21}{16 a d \sqrt {a+a \sec (c+d x)}}-\frac {11 \operatorname {Subst}\left (\int \frac {1}{(-a+a x) \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{32 d}+\frac {\operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{a d}\\ &=-\frac {3 a}{20 d (a+a \sec (c+d x))^{5/2}}+\frac {a}{2 d (1-\sec (c+d x)) (a+a \sec (c+d x))^{5/2}}+\frac {5}{24 d (a+a \sec (c+d x))^{3/2}}+\frac {21}{16 a d \sqrt {a+a \sec (c+d x)}}+\frac {2 \operatorname {Subst}\left (\int \frac {1}{-1+\frac {x^2}{a}} \, dx,x,\sqrt {a+a \sec (c+d x)}\right )}{a^2 d}-\frac {11 \operatorname {Subst}\left (\int \frac {1}{-2 a+x^2} \, dx,x,\sqrt {a+a \sec (c+d x)}\right )}{16 a d}\\ &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}+\frac {11 \tanh ^{-1}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{16 \sqrt {2} a^{3/2} d}-\frac {3 a}{20 d (a+a \sec (c+d x))^{5/2}}+\frac {a}{2 d (1-\sec (c+d x)) (a+a \sec (c+d x))^{5/2}}+\frac {5}{24 d (a+a \sec (c+d x))^{3/2}}+\frac {21}{16 a d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.18, size = 90, normalized size = 0.51 \[ \frac {a \left (-11 (\sec (c+d x)-1) \, _2F_1\left (-\frac {5}{2},1;-\frac {3}{2};\frac {1}{2} (\sec (c+d x)+1)\right )+8 (\sec (c+d x)-1) \, _2F_1\left (-\frac {5}{2},1;-\frac {3}{2};\sec (c+d x)+1\right )-10\right )}{20 d (\sec (c+d x)-1) (a (\sec (c+d x)+1))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^3/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(a*(-10 - 11*Hypergeometric2F1[-5/2, 1, -3/2, (1 + Sec[c + d*x])/2]*(-1 + Sec[c + d*x]) + 8*Hypergeometric2F1[
-5/2, 1, -3/2, 1 + Sec[c + d*x]]*(-1 + Sec[c + d*x])))/(20*d*(-1 + Sec[c + d*x])*(a*(1 + Sec[c + d*x]))^(5/2))

________________________________________________________________________________________

fricas [B]  time = 0.64, size = 592, normalized size = 3.36 \[ \left [\frac {165 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{4} + 2 \, \cos \left (d x + c\right )^{3} - 2 \, \cos \left (d x + c\right ) - 1\right )} \sqrt {a} \log \left (\frac {2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right ) - 1}\right ) + 480 \, {\left (\cos \left (d x + c\right )^{4} + 2 \, \cos \left (d x + c\right )^{3} - 2 \, \cos \left (d x + c\right ) - 1\right )} \sqrt {a} \log \left (-8 \, a \cos \left (d x + c\right )^{2} + 4 \, {\left (2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} - 8 \, a \cos \left (d x + c\right ) - a\right ) + 4 \, {\left (449 \, \cos \left (d x + c\right )^{4} + 351 \, \cos \left (d x + c\right )^{3} - 365 \, \cos \left (d x + c\right )^{2} - 315 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{960 \, {\left (a^{2} d \cos \left (d x + c\right )^{4} + 2 \, a^{2} d \cos \left (d x + c\right )^{3} - 2 \, a^{2} d \cos \left (d x + c\right ) - a^{2} d\right )}}, -\frac {165 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{4} + 2 \, \cos \left (d x + c\right )^{3} - 2 \, \cos \left (d x + c\right ) - 1\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{a \cos \left (d x + c\right ) + a}\right ) - 480 \, {\left (\cos \left (d x + c\right )^{4} + 2 \, \cos \left (d x + c\right )^{3} - 2 \, \cos \left (d x + c\right ) - 1\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{2 \, a \cos \left (d x + c\right ) + a}\right ) - 2 \, {\left (449 \, \cos \left (d x + c\right )^{4} + 351 \, \cos \left (d x + c\right )^{3} - 365 \, \cos \left (d x + c\right )^{2} - 315 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{480 \, {\left (a^{2} d \cos \left (d x + c\right )^{4} + 2 \, a^{2} d \cos \left (d x + c\right )^{3} - 2 \, a^{2} d \cos \left (d x + c\right ) - a^{2} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/960*(165*sqrt(2)*(cos(d*x + c)^4 + 2*cos(d*x + c)^3 - 2*cos(d*x + c) - 1)*sqrt(a)*log((2*sqrt(2)*sqrt(a)*sq
rt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c) + 3*a*cos(d*x + c) + a)/(cos(d*x + c) - 1)) + 480*(cos(d*x
+ c)^4 + 2*cos(d*x + c)^3 - 2*cos(d*x + c) - 1)*sqrt(a)*log(-8*a*cos(d*x + c)^2 + 4*(2*cos(d*x + c)^2 + cos(d*
x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)) - 8*a*cos(d*x + c) - a) + 4*(449*cos(d*x + c)^4 + 351*
cos(d*x + c)^3 - 365*cos(d*x + c)^2 - 315*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/(a^2*d*cos(d*
x + c)^4 + 2*a^2*d*cos(d*x + c)^3 - 2*a^2*d*cos(d*x + c) - a^2*d), -1/480*(165*sqrt(2)*(cos(d*x + c)^4 + 2*cos
(d*x + c)^3 - 2*cos(d*x + c) - 1)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos
(d*x + c)/(a*cos(d*x + c) + a)) - 480*(cos(d*x + c)^4 + 2*cos(d*x + c)^3 - 2*cos(d*x + c) - 1)*sqrt(-a)*arctan
(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) + a)) - 2*(449*cos(d*x + c)
^4 + 351*cos(d*x + c)^3 - 365*cos(d*x + c)^2 - 315*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/(a^2
*d*cos(d*x + c)^4 + 2*a^2*d*cos(d*x + c)^3 - 2*a^2*d*cos(d*x + c) - a^2*d)]

________________________________________________________________________________________

giac [A]  time = 1.63, size = 281, normalized size = 1.60 \[ \frac {\frac {165 \, \sqrt {2} \arctan \left (\frac {\sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}{\sqrt {-a}}\right )}{\sqrt {-a} a \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} - \frac {960 \, \arctan \left (\frac {\sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a} a \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} + \frac {15 \, \sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}{a^{2} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right ) \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}} - \frac {2 \, \sqrt {2} {\left (3 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} a^{16} + 20 \, {\left (-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {3}{2}} a^{17} + 165 \, \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} a^{18}\right )}}{a^{20} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}}{480 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/480*(165*sqrt(2)*arctan(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/(sqrt(-a)*a*sgn(tan(1/2*d*x + 1/2*c)^2
 - 1)) - 960*arctan(1/2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/(sqrt(-a)*a*sgn(tan(1/2*d*x + 1/
2*c)^2 - 1)) + 15*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/(a^2*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)*tan(1/2*d*x
 + 1/2*c)^2) - 2*sqrt(2)*(3*(a*tan(1/2*d*x + 1/2*c)^2 - a)^2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*a^16 + 20*(-a
*tan(1/2*d*x + 1/2*c)^2 + a)^(3/2)*a^17 + 165*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*a^18)/(a^20*sgn(tan(1/2*d*x
+ 1/2*c)^2 - 1)))/d

________________________________________________________________________________________

maple [B]  time = 1.36, size = 514, normalized size = 2.92 \[ \frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )\right ) \left (-1+\cos \left (d x +c \right )\right )^{3} \left (480 \left (\cos ^{4}\left (d x +c \right )\right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right )+165 \left (\cos ^{4}\left (d x +c \right )\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )+960 \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right )+330 \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )+898 \left (\cos ^{4}\left (d x +c \right )\right )-960 \cos \left (d x +c \right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right )+702 \left (\cos ^{3}\left (d x +c \right )\right )-330 \cos \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )-480 \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \sqrt {2}-730 \left (\cos ^{2}\left (d x +c \right )\right )-165 \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )-630 \cos \left (d x +c \right )\right )}{480 d \sin \left (d x +c \right )^{8} a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^3/(a+a*sec(d*x+c))^(3/2),x)

[Out]

1/480/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(1+cos(d*x+c))*(-1+cos(d*x+c))^3*(480*(-2*cos(d*x+c)/(1+cos(d*x+c)
))^(1/2)*cos(d*x+c)^4*2^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))+165*(-2*cos(d*x+c)/(1+c
os(d*x+c)))^(1/2)*cos(d*x+c)^4*arctan(1/(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2))+960*cos(d*x+c)^3*2^(1/2)*(-2*cos
(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))+330*cos(d*x+c)^3*(-2*co
s(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2))+898*cos(d*x+c)^4-960*cos(d*x+c)*
2^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))+702*cos(
d*x+c)^3-330*cos(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2))-48
0*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))*2^(1/2)-730*co
s(d*x+c)^2-165*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2))-630*cos(d*x
+c))/sin(d*x+c)^8/a^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cot \left (d x + c\right )^{3}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cot(d*x + c)^3/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\mathrm {cot}\left (c+d\,x\right )}^3}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^3/(a + a/cos(c + d*x))^(3/2),x)

[Out]

int(cot(c + d*x)^3/(a + a/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cot ^{3}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**3/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral(cot(c + d*x)**3/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________